

FermiGrid Design Note

For

Software Release Management
and

Software Acceptance Process

Keith Chadwick
16-May-2008

Abstract:

This document describes the software acceptance process that is used by FermiGrid

Document Revision History:

Version Date Author Comments

0.1 12-Feb-08 Keith Chadwick Initial version.
0.2 05-May-08 Keith Chadwick Clean up formatting and content.
0.3 16-May-08 Eileen Berman Small changes to wording.
0.4 16-May-08 Keith Chadwick More wording tweaks.
0.5 16-May-08 Igor

Mandrichenko
Modified some wording, added comments

0.6 10-Jun-08 Eileen Berman Modifications based on discussion with
IVM

0.7 10-Jun-2008 Keith Chadwick Additional wordsmithing.

Introduction:

Effective operation and management of FermiGrid requires a strict software release
management and software acceptance process in order to insure operation of the
FermiGrid services.

Additional goals of this process include:

• Effective tests at production scale.
• Ease administration effort by operations group.
• Reduce need to contact the developer(s).

In order to support these goals, software project managers will need to:

• Incorporate time to transition to operations in WBS.
• Incorporate documentation (install, operate, capture debug information, upgrade).

We also need to distinguish between three categories of software releases:

• Emergency bug fixes to restore existing functionality.
• Normal routine bug fixes of existing functionality.
• Extensions to existing functionality.

Developers need to think about running their code on a system that is providing other
services and cannot "just" be rebooted.

Prioritize needed enhancements.

Perform a survey to understand where we are today with respect to this process.

Multiple forms of software packaging/distribution methods shall be accepted. Examples
include pacman, RPM, ups/upd and bare tarballs.

Software Acceptance Environment:

In general, there shall be no root access to the production software or service instance by
developers (other than explicitly enabled by FermiGrid personnel during problem
diagnosis and/or resolution).

Software Documentation:

FermiGrid personnel shall receive a documentation package from the service developers
that includes:

1. How to install and/or upgrade the service.

2. How to revert back to a prior version of the service if necessary.

3. How to start the service.

4. How to shutdown the service.

5. How to test critical1 service functionality (ideally a full regression test).

6. How to monitor critical2 service functionality.

7. A description of the service log locations and logging options.

8. A list of information to capture in the event of problems (debug script?) etc.

9. Other information that is necessary to insure service operation.

It is expected that all of the above documents are “living documents” – they will be
developed, revised and enhanced as part of the service development and deployment
lifecycle.

Software Development/Integration/Production Procedure:

The service development team must provide a well-defined process (including version
release procedure and regression test suite) as detailed in the process below.

The developers must be able to provide service updates and/or patches for all currently
supported versions of their software without requiring FermiGrid to update to the latest
version of the service.

Note 1 - The regression test suite on the [production, integration, development] system
corresponds to the [production, integration, development] software version.

Note 2 - The process below is the process used by FermiGrid to test, integrate and deploy
the SAZ package.

1. Development of the service takes place on development system(s) that are either

1 FermiGrid personnel participate in the definition of critical functionality
2 FermiGrid personnel participate in the definition of critical functionality

operated by the developers or otherwise operated where the developers have root
access.

2. Development version service passes the “regression test suite” that is defined and

provided by the developers. This test suite may be a manual process or (ideally) an
automated process. The regression test suite must be capable of testing at least the
critical portions of the service functionality as well as major new features introduced
in new releases, and must also provide “load” or “stress” test functions when
applicable and/or appropriate. If the regression test suite is not automated then it
must be explicitly documented to assure that all tests have been performed each and
every time that a release is cut. If it is not documented, then it never happened.
Developers are responsible for defining test acceptance criteria.

3. The developers perform a formal software version cut and provide FermiGrid with a

package in the appropriate format (see Introduction).

4. FermiGrid personnel install this version on the test/integration system(s) using the

instructions provided by the developers. Note: Developers may assist in the
installation, but any such "assistance" must be immediately entered into the
documentation package by the developers.

5. Test/integration installation passes regression test suite. FermiGrid personnel run the

regression tests with the assistance of the developers where necessary. Any
“unusual” assistance by the developers must be immediately entered into the service
documentation package.

6. Formal acceptance of version release to production by FermiGrid management is now

considered complete and the proposed changes may be submitted to FermiGrid
Change Advisory Board for scheduling the transition of the service.

7. Service version installation on production system(s) by FermiGrid personnel.

8. Production installation passes regression test suite.

9. Formal release to operation.

Software Support Infrastructure:

Developers must supply a support infrastructure for “expert” level questions. In the case
of packages that are distributed by the VDT, then this is the case.

